Course Specifications

Programme(s) on which the course is given: Post-Graduate (Mineralogy & Petrology)

Major or Minor element of programmes: Major Department offering the programme: Geology Department offering the course: Geology Academic year / Level: 00/ Post Graduated

Date of specification approval:

a- Basic Information

Title: Rock Dating Methods Code: G635

Credit Hours: 2 Credits Lecture: 2 Credit

Hours

Tutorial: Practical: ----- Total: 2 Credit Hours

b- Professional Information

1 – Overall Aims of Course

• The student should be familiar with the various principles of rock dating methods.

2 – Intended Learning Outcomes of Course (ILOs)

- **a-** Knowledge and Understanding: By the end of this course, the student should be able to:
 - **a1-** Familiarize with the various conditions that must be satisfied before an isotopic age determination is considered a valid crystallization age.
 - **a2-** Understand the various principles of relative dating of rocks.
- **b- Intellectual Skills:** By the end of this course, the student should be able to:
 - **b1-** Decide which radioactive elements have long half-lives and are useful for dating old rocks?
 - **b2-** Specify problems and finding solutions.
- c- Professional and Practical Skills: By the end of this course, the student should be able to:
 - **c1-** Calculate the age of a rock if given isotopic half-life and the amount of parent and daughter material present remaining in the rock.
 - **c2-** Conclude the most useful method that provide a crystallization age for the rock.
- **d-** General and Transferable Skills: By the end of this course, the student should be able to:
 - **d1-** Use internet critically for communication and searching on course topics.
 - **d2-** Write and present the age dating subjects in a potentiality published way.
 - **d3-** Organize and work effectively within a team.
 - **d4-** Give effective presentations using appropriate methods.

3. Contents

Topic	Credit hours	Lecture
Review of isotope terminology and decay processes	4	4
Introduction to dating methods, the radiometric "clocks in rocks"	4	4
Potassium-Argon method	2	2
Argon-Argon method	2	2
Rubidium-Strontium method	2	2
Samarium-Neodymium method	2	2
Lutetium-Hafnium method	2	2
Rhenium-Osmium method	2	2
Uranium-Lead method	4	4
The Age of the Earth	2	2
Radiometric Dating of Geologically Young Samples	2	2
Total	28	28

4 - Teaching and Learning Methods

- **4.1-**Professional lectures
- **4.2-** Class discussion
- **4.3-** Preparation of scientific reports during the semester.

5- Student Assessment Methods

5.1-Regular written examto assess a1-a2**5.2-**Mid-term examto assess a2, b1, c1-c2**5.3-**At the end of term examto assess a1-a2, b1, c1-c2

5.4- Reports and discussions. to assess d1-d4

Assessment Schedule

Assessment 1: Short exam (class activities) every two weeks

Assessment 2: Mid-term (written) week 7
Assessment 3: Final-term (written and verbal) week 15-16

Weighting of Assessments

Semester Work and discussions: 20 % Mid-Term Exam : 20% Final-term Exam : 60% Total: 100%

6- List of References

- **6.1-** All course topics will be given from published international journals and high standard local journals.
- **6.2.** Essential Books (Text Books):

Gunter Faure 1986. Principles of Isotope Geology, 2nd Edition. John Wiley, 608p.

6.4- Periodicals, Web Sites, ... etc

Journal of African Earth Sciences (Elsevier), Precambrian Research (Elsevier)

7- Facilities Required for Teaching and Learning

Laptop, data show, internet.

Course Coordinator: Prof. Ibrahim khalaf

Head of Department: Prof. Ahmed Al-Boghdady

Date: / /2012